Copied to
clipboard

G = C42.85D4order 128 = 27

67th non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.85D4, C42.176C23, C4⋊Q8.26C4, C4⋊C8.210C22, C42.117(C2×C4), C4.6Q1624C2, (C22×C4).245D4, C4⋊Q8.248C22, (C22×Q8).11C4, C4.108(C8.C22), C42.6C4.26C2, (C2×C42).220C22, C23.187(C22⋊C4), C22.19(C4.D4), C2.15(C23.38D4), (C2×C4⋊Q8).7C2, (C2×Q8).34(C2×C4), (C2×C4).1247(C2×D4), C2.22(C2×C4.D4), (C22×C4).242(C2×C4), (C2×C4).170(C22×C4), (C2×C4).108(C22⋊C4), C22.234(C2×C22⋊C4), SmallGroup(128,290)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.85D4
C1C2C22C2×C4C42C2×C42C2×C4⋊Q8 — C42.85D4
C1C22C2×C4 — C42.85D4
C1C22C2×C42 — C42.85D4
C1C22C22C42 — C42.85D4

Generators and relations for C42.85D4
 G = < a,b,c,d | a4=b4=1, c4=a2b2, d2=b, ab=ba, cac-1=a-1b2, dad-1=ab2, cbc-1=b-1, bd=db, dcd-1=b-1c3 >

Subgroups: 228 in 114 conjugacy classes, 48 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C2×C4⋊C4, C4⋊Q8, C4⋊Q8, C22×Q8, C4.6Q16, C42.6C4, C2×C4⋊Q8, C42.85D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4.D4, C2×C22⋊C4, C8.C22, C2×C4.D4, C23.38D4, C42.85D4

Character table of C42.85D4

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L8A8B8C8D8E8F8G8H
 size 11112222224444888888888888
ρ111111111111111111111111111    trivial
ρ21111-1-111111-1-1-111-1-11-1-111-1-11    linear of order 2
ρ31111-1-111111-1-1-1-1-111-11-11-11-11    linear of order 2
ρ411111111111111-1-1-1-1-1-111-1-111    linear of order 2
ρ511111111111111-1-1-1-111-1-111-1-1    linear of order 2
ρ61111-1-111111-1-1-1-1-1111-11-11-11-1    linear of order 2
ρ71111-1-111111-1-1-111-1-1-111-1-111-1    linear of order 2
ρ8111111111111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ91111-1-1-1-1-1-111-111-1-11i-ii-i-ii-ii    linear of order 4
ρ10111111-1-1-1-11-11-11-11-1ii-i-i-i-iii    linear of order 4
ρ11111111-1-1-1-11-11-1-11-11-i-i-i-iiiii    linear of order 4
ρ121111-1-1-1-1-1-111-11-111-1-iii-ii-i-ii    linear of order 4
ρ13111111-1-1-1-11-11-11-11-1-i-iiiii-i-i    linear of order 4
ρ141111-1-1-1-1-1-111-111-1-11-ii-iii-ii-i    linear of order 4
ρ151111-1-1-1-1-1-111-11-111-1i-i-ii-iii-i    linear of order 4
ρ16111111-1-1-1-11-11-1-11-11iiii-i-i-i-i    linear of order 4
ρ172222-2-2-2-222-2-222000000000000    orthogonal lifted from D4
ρ182222-2-222-2-2-222-2000000000000    orthogonal lifted from D4
ρ19222222-2-222-22-2-2000000000000    orthogonal lifted from D4
ρ2022222222-2-2-2-2-22000000000000    orthogonal lifted from D4
ρ214-44-44-400000000000000000000    orthogonal lifted from C4.D4
ρ224-44-4-4400000000000000000000    orthogonal lifted from C4.D4
ρ234-4-440000-440000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2444-4-4004-4000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ254-4-4400004-40000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2644-4-400-44000000000000000000    symplectic lifted from C8.C22, Schur index 2

Smallest permutation representation of C42.85D4
On 64 points
Generators in S64
(1 33 62 56)(2 38 63 53)(3 35 64 50)(4 40 57 55)(5 37 58 52)(6 34 59 49)(7 39 60 54)(8 36 61 51)(9 24 32 46)(10 21 25 43)(11 18 26 48)(12 23 27 45)(13 20 28 42)(14 17 29 47)(15 22 30 44)(16 19 31 41)
(1 50 58 39)(2 40 59 51)(3 52 60 33)(4 34 61 53)(5 54 62 35)(6 36 63 55)(7 56 64 37)(8 38 57 49)(9 18 28 44)(10 45 29 19)(11 20 30 46)(12 47 31 21)(13 22 32 48)(14 41 25 23)(15 24 26 42)(16 43 27 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 48 50 13 58 22 39 32)(2 16 40 43 59 27 51 17)(3 46 52 11 60 20 33 30)(4 14 34 41 61 25 53 23)(5 44 54 9 62 18 35 28)(6 12 36 47 63 31 55 21)(7 42 56 15 64 24 37 26)(8 10 38 45 57 29 49 19)

G:=sub<Sym(64)| (1,33,62,56)(2,38,63,53)(3,35,64,50)(4,40,57,55)(5,37,58,52)(6,34,59,49)(7,39,60,54)(8,36,61,51)(9,24,32,46)(10,21,25,43)(11,18,26,48)(12,23,27,45)(13,20,28,42)(14,17,29,47)(15,22,30,44)(16,19,31,41), (1,50,58,39)(2,40,59,51)(3,52,60,33)(4,34,61,53)(5,54,62,35)(6,36,63,55)(7,56,64,37)(8,38,57,49)(9,18,28,44)(10,45,29,19)(11,20,30,46)(12,47,31,21)(13,22,32,48)(14,41,25,23)(15,24,26,42)(16,43,27,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,48,50,13,58,22,39,32)(2,16,40,43,59,27,51,17)(3,46,52,11,60,20,33,30)(4,14,34,41,61,25,53,23)(5,44,54,9,62,18,35,28)(6,12,36,47,63,31,55,21)(7,42,56,15,64,24,37,26)(8,10,38,45,57,29,49,19)>;

G:=Group( (1,33,62,56)(2,38,63,53)(3,35,64,50)(4,40,57,55)(5,37,58,52)(6,34,59,49)(7,39,60,54)(8,36,61,51)(9,24,32,46)(10,21,25,43)(11,18,26,48)(12,23,27,45)(13,20,28,42)(14,17,29,47)(15,22,30,44)(16,19,31,41), (1,50,58,39)(2,40,59,51)(3,52,60,33)(4,34,61,53)(5,54,62,35)(6,36,63,55)(7,56,64,37)(8,38,57,49)(9,18,28,44)(10,45,29,19)(11,20,30,46)(12,47,31,21)(13,22,32,48)(14,41,25,23)(15,24,26,42)(16,43,27,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,48,50,13,58,22,39,32)(2,16,40,43,59,27,51,17)(3,46,52,11,60,20,33,30)(4,14,34,41,61,25,53,23)(5,44,54,9,62,18,35,28)(6,12,36,47,63,31,55,21)(7,42,56,15,64,24,37,26)(8,10,38,45,57,29,49,19) );

G=PermutationGroup([[(1,33,62,56),(2,38,63,53),(3,35,64,50),(4,40,57,55),(5,37,58,52),(6,34,59,49),(7,39,60,54),(8,36,61,51),(9,24,32,46),(10,21,25,43),(11,18,26,48),(12,23,27,45),(13,20,28,42),(14,17,29,47),(15,22,30,44),(16,19,31,41)], [(1,50,58,39),(2,40,59,51),(3,52,60,33),(4,34,61,53),(5,54,62,35),(6,36,63,55),(7,56,64,37),(8,38,57,49),(9,18,28,44),(10,45,29,19),(11,20,30,46),(12,47,31,21),(13,22,32,48),(14,41,25,23),(15,24,26,42),(16,43,27,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,48,50,13,58,22,39,32),(2,16,40,43,59,27,51,17),(3,46,52,11,60,20,33,30),(4,14,34,41,61,25,53,23),(5,44,54,9,62,18,35,28),(6,12,36,47,63,31,55,21),(7,42,56,15,64,24,37,26),(8,10,38,45,57,29,49,19)]])

Matrix representation of C42.85D4 in GL8(𝔽17)

01000000
160000000
00010000
001600000
00000100
000016000
0000110016
00007110
,
10000000
01000000
00100000
00010000
00000100
000016000
000081301
0000139160
,
00550000
005120000
512000000
1212000000
0000111208
000010280
0000512157
00008656
,
00100000
00010000
10000000
01000000
000068150
00001014015
000073119
00007273

G:=sub<GL(8,GF(17))| [0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,1,7,0,0,0,0,1,0,10,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,16,8,13,0,0,0,0,1,0,13,9,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0],[0,0,5,12,0,0,0,0,0,0,12,12,0,0,0,0,5,5,0,0,0,0,0,0,5,12,0,0,0,0,0,0,0,0,0,0,11,10,5,8,0,0,0,0,12,2,12,6,0,0,0,0,0,8,15,5,0,0,0,0,8,0,7,6],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,6,10,7,7,0,0,0,0,8,14,3,2,0,0,0,0,15,0,11,7,0,0,0,0,0,15,9,3] >;

C42.85D4 in GAP, Magma, Sage, TeX

C_4^2._{85}D_4
% in TeX

G:=Group("C4^2.85D4");
// GroupNames label

G:=SmallGroup(128,290);
// by ID

G=gap.SmallGroup(128,290);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,456,1430,1123,1018,248,1971,242]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2*b^2,d^2=b,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a*b^2,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations

Export

Character table of C42.85D4 in TeX

׿
×
𝔽